If the temperature of a uniform rod is slightly increased by Δt , its moment of inertia I about a perpendicular
by Lat. 110 monetic of file and a perpendicular

bisector increases by (a) zero (b) $\alpha I \Delta t$ (c) $2\alpha I \Delta t$ (d) $3\alpha I \Delta t$.

 $M \cdot 0 \cdot I$ of rod about a to bisector is:- $I = \frac{ML^2}{12}$

on differentiating both sides by write L

dI = (12)(21)

a dI = (ML) dL

= DI = (HL) DL

= (ML)(LUST) (- DL=LUST)

= (HI2) XST

=(2I) XST

* SI = 2IXDT